A fuzzy model for human fall detection in infrared video

نویسندگان

  • Marina V. Sokolova
  • Juan Serrano-Cuerda
  • José Carlos Castillo
  • Antonio Fernández-Caballero
چکیده

Fall detection, especially for elderly people, is a challenging problem which demands new products and technologies. In this paper a fuzzy model for fall detection and inactivity monitoring in infrared video is presented. The classification features proposed include geometric and kinematic parameters associated with more or less sudden changes in the tracked human-related regions of interest. A complete segmentation and tracking algorithm for infrared video as well as a fuzzy fall detection and confirmation algorithm are introduced. The proposed system is capable of identifying true and false falls, enhanced with inactivity monitoring aimed at confirming the need for medical assistance and/or care. The fall indicators used as well as their fuzzy model is explained in detail. The fuzzy model has been tested for a wide number of static and dynamic falls, demonstrating exciting

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fall Detection System based on the Type II Fuzzy Logic and Multi-Objective PSO Algorithm

The Elderly health is an important and noticeable issue; since these people are priceless resources of experience in the society. Elderly adults are more likely to be severely injured or to die following falls. Hence, fast detection of such incidents may even lead to saving the life of the injured person. Several techniques have been proposed lately for the fall detection of people, mostly cate...

متن کامل

Lateral Inhibition in Accumulative Computation and Fuzzy Sets for Human Fall Pattern Recognition in Colour and Infrared Imagery

Fall detection is an emergent problem in pattern recognition. In this paper, a novel approach which enables to identify a type of a fall and reconstruct its characteristics is presented. The features detected include the position previous to a fall, the direction and velocity of a fall, and the postfall inactivity. Video sequences containing a possible fall are analysed image by image using the...

متن کامل

Linguistic summarization of video for fall detection using voxel person and fuzzy logic

In this paper, we present a method for recognizing human activity from linguistic summarizations of temporal fuzzy inference curves representing the states of a three-dimensional object called voxel person. A hierarchy of fuzzy logic is used, where the output from each level is summarized and fed into the next level. We present a two level model for fall detection. The first level infers the st...

متن کامل

Activity Recognition from Video in Day or Night Using Fuzzy Clustering Techniques

ABSTRACT: An approach for activity state recognition implemented on data collected from various sensors – standard web cameras under normal illumination, web cameras using infrared lighting, and the inexpensive Microsoft Kinect camera system. Sensors such as the Kinect ensure that activity segmentation is possible during day time as well as night. It is especially useful for activity monitoring...

متن کامل

Compressed Domain Scene Change Detection Based on Transform Units Distribution in High Efficiency Video Coding Standard

Scene change detection plays an important role in a number of video applications, including video indexing, searching, browsing, semantic features extraction, and, in general, pre-processing and post-processing operations. Several scene change detection methods have been proposed in different coding standards. Most of them use fixed thresholds for the similarity metrics to determine if there wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Fuzzy Systems

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2013